Submission Details
Challenge: GCD
Submitted by: GasStationManager
Submitted at: 2024-11-24 12:44:44
Code:
def GCD(a b:Nat):Nat
:=sorry
First Theorem Proof:
theorem gcd_is_div (x y: Nat):
(p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y)
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmphnnwwdw5/proof.olean
uncaught exception: sorryAx is not in the allowed set of standard axioms
------------------
Replaying /root/CodeProofTheArena/temp/tmphnnwwdw5/target.olean
Finished imports
Finished replay
---
theorem
gcd_is_div
∀ (x y : ℕ), x > 0 → GCD x y ∣ x ∧ GCD x y ∣ y
#[sorryAx]
---
def
GCD
ℕ → ℕ → ℕ
:= fun (a : Nat) (b : Nat) => sorryAx.{1} Nat Bool.false
#[sorryAx]
------------------
Replaying /root/CodeProofTheArena/temp/tmphnnwwdw5/proof.olean
Finished imports
Finished replay
---
theorem
gcd_is_div
∀ (x y : ℕ), x > 0 → GCD x y ∣ x ∧ GCD x y ∣ y
#[sorryAx]
---
def
GCD
ℕ → ℕ → ℕ
:= fun (a : Nat) (b : Nat) => sorryAx.{1} Nat Bool.false
#[sorryAx]
Second Theorem Proof:
theorem gcd_is_greatest (x y: Nat):
(x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y )
:=sorry
Status: Incorrect
Feedback:
found a problem in /root/CodeProofTheArena/temp/tmphnnwwdw5/proof2.olean
uncaught exception: sorryAx is not in the allowed set of standard axioms
------------------
Replaying /root/CodeProofTheArena/temp/tmphnnwwdw5/target2.olean
Finished imports
Finished replay
---
def
GCD
ℕ → ℕ → ℕ
:= fun (a : Nat) (b : Nat) => sorryAx.{1} Nat Bool.false
#[sorryAx]
---
theorem
gcd_is_greatest
∀ (x y : ℕ), x > 0 → ¬∃ z, z ∣ x ∧ z ∣ y ∧ z > GCD x y
#[sorryAx]
------------------
Replaying /root/CodeProofTheArena/temp/tmphnnwwdw5/proof2.olean
Finished imports
Finished replay
---
def
GCD
ℕ → ℕ → ℕ
:= fun (a : Nat) (b : Nat) => sorryAx.{1} Nat Bool.false
#[sorryAx]
---
theorem
gcd_is_greatest
∀ (x y : ℕ), x > 0 → ¬∃ z, z ∣ x ∧ z ∣ y ∧ z > GCD x y
#[sorryAx]